3.6.54 \(\int \frac {\sqrt {a^2+2 a b x^2+b^2 x^4}}{(d x)^{3/2}} \, dx\)

Optimal. Leaf size=91 \[ \frac {2 b (d x)^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}}{3 d^3 \left (a+b x^2\right )}-\frac {2 a \sqrt {a^2+2 a b x^2+b^2 x^4}}{d \sqrt {d x} \left (a+b x^2\right )} \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {1112, 14} \begin {gather*} \frac {2 b (d x)^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}}{3 d^3 \left (a+b x^2\right )}-\frac {2 a \sqrt {a^2+2 a b x^2+b^2 x^4}}{d \sqrt {d x} \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]/(d*x)^(3/2),x]

[Out]

(-2*a*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(d*Sqrt[d*x]*(a + b*x^2)) + (2*b*(d*x)^(3/2)*Sqrt[a^2 + 2*a*b*x^2 + b^2
*x^4])/(3*d^3*(a + b*x^2))

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 1112

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + b*x^2 + c*x^4)^FracPa
rt[p]/(c^IntPart[p]*(b/2 + c*x^2)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^2)^(2*p), x], x] /; FreeQ[{a, b, c,
 d, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rubi steps

\begin {align*} \int \frac {\sqrt {a^2+2 a b x^2+b^2 x^4}}{(d x)^{3/2}} \, dx &=\frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \int \frac {a b+b^2 x^2}{(d x)^{3/2}} \, dx}{a b+b^2 x^2}\\ &=\frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \int \left (\frac {a b}{(d x)^{3/2}}+\frac {b^2 \sqrt {d x}}{d^2}\right ) \, dx}{a b+b^2 x^2}\\ &=-\frac {2 a \sqrt {a^2+2 a b x^2+b^2 x^4}}{d \sqrt {d x} \left (a+b x^2\right )}+\frac {2 b (d x)^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}}{3 d^3 \left (a+b x^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 43, normalized size = 0.47 \begin {gather*} \frac {2 x \left (b x^2-3 a\right ) \sqrt {\left (a+b x^2\right )^2}}{3 (d x)^{3/2} \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]/(d*x)^(3/2),x]

[Out]

(2*x*(-3*a + b*x^2)*Sqrt[(a + b*x^2)^2])/(3*(d*x)^(3/2)*(a + b*x^2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 26.01, size = 67, normalized size = 0.74 \begin {gather*} \frac {2 \left (b d^2 x^2-3 a d^2\right ) \left (a d^2+b d^2 x^2\right )}{3 d^5 \sqrt {d x} \sqrt {\frac {\left (a d^2+b d^2 x^2\right )^2}{d^4}}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]/(d*x)^(3/2),x]

[Out]

(2*(-3*a*d^2 + b*d^2*x^2)*(a*d^2 + b*d^2*x^2))/(3*d^5*Sqrt[d*x]*Sqrt[(a*d^2 + b*d^2*x^2)^2/d^4])

________________________________________________________________________________________

fricas [A]  time = 0.89, size = 22, normalized size = 0.24 \begin {gather*} \frac {2 \, {\left (b x^{2} - 3 \, a\right )} \sqrt {d x}}{3 \, d^{2} x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x^2+a)^2)^(1/2)/(d*x)^(3/2),x, algorithm="fricas")

[Out]

2/3*(b*x^2 - 3*a)*sqrt(d*x)/(d^2*x)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 41, normalized size = 0.45 \begin {gather*} \frac {2 \, {\left (\frac {\sqrt {d x} b x \mathrm {sgn}\left (b x^{2} + a\right )}{d} - \frac {3 \, a \mathrm {sgn}\left (b x^{2} + a\right )}{\sqrt {d x}}\right )}}{3 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x^2+a)^2)^(1/2)/(d*x)^(3/2),x, algorithm="giac")

[Out]

2/3*(sqrt(d*x)*b*x*sgn(b*x^2 + a)/d - 3*a*sgn(b*x^2 + a)/sqrt(d*x))/d

________________________________________________________________________________________

maple [A]  time = 0.00, size = 39, normalized size = 0.43 \begin {gather*} -\frac {2 \left (-b \,x^{2}+3 a \right ) \sqrt {\left (b \,x^{2}+a \right )^{2}}\, x}{3 \left (b \,x^{2}+a \right ) \left (d x \right )^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*x^2+a)^2)^(1/2)/(d*x)^(3/2),x)

[Out]

-2/3*x*(-b*x^2+3*a)*((b*x^2+a)^2)^(1/2)/(b*x^2+a)/(d*x)^(3/2)

________________________________________________________________________________________

maxima [A]  time = 1.36, size = 25, normalized size = 0.27 \begin {gather*} -\frac {2 \, {\left (\frac {3 \, a}{\sqrt {d x}} - \frac {\left (d x\right )^{\frac {3}{2}} b}{d^{2}}\right )}}{3 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x^2+a)^2)^(1/2)/(d*x)^(3/2),x, algorithm="maxima")

[Out]

-2/3*(3*a/sqrt(d*x) - (d*x)^(3/2)*b/d^2)/d

________________________________________________________________________________________

mupad [B]  time = 4.35, size = 52, normalized size = 0.57 \begin {gather*} \frac {\left (\frac {2\,x^2}{3\,d}-\frac {2\,a}{b\,d}\right )\,\sqrt {{\left (b\,x^2+a\right )}^2}}{x^2\,\sqrt {d\,x}+\frac {a\,\sqrt {d\,x}}{b}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*x^2)^2)^(1/2)/(d*x)^(3/2),x)

[Out]

(((2*x^2)/(3*d) - (2*a)/(b*d))*((a + b*x^2)^2)^(1/2))/(x^2*(d*x)^(1/2) + (a*(d*x)^(1/2))/b)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x**2+a)**2)**(1/2)/(d*x)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________